Понедельник, 29.04.2024, 17:03
Архитектура электронно вычислительных машин и систем
.::Здрасте::. Гость | RSS
Главная Каталог статей Регистрация Вход
Меню сайта

Категории раздела
Леция 1 [1]
Лекция 2 [1]
Лекция 3 [1]
Лекция 4 [1]
Лекция 5 [1]
Лекция 6 [1]
Лекция 7 [1]
Лекция 8 [1]
Лекция 8 [1]

Наш опрос
Оцените мой сайт
Всего ответов: 5

Видео

Форма входа

Главная » Статьи » Лекции » Лекция 8

Лекция 8 (часть 1)
Ромашковые принтеры

Ромашковые принтеры сродни печатным машинкам. В настоящее время как таковых ромашковых принтеров практически не существует и принцип печати ромашкой используется в электронных и механических печатных машинках. 
В свое время такие принтеры были широко распространены, однако с появлением более скоростных матричных ударных аппаратов, а также лазерных принтеров ромашковые практически исчезли и в настоящее время такой способ печати используется только в печатных машинках. 
Ромашковые печатающие устройства единственные среди всех используемых принципов печати, которые не формируют изображение матрицей из точек. 
В механических печатных машинках каждая клавиша просто соединяется с определенным рычагом, на конце которого находится соответствующая буква. При нажатии на клавишу происходит удар матрицы по красящей ленте, а через ленту по бумаге. 
В иностранных же машинках используется колесо в виде ромашки, на лепестках которого нанесены буквы. Количество лепестков равно количеству возможных символов плюс дополнительные символы для различных способов печати. 
Ромашка одевается на специальное колесо. Колесо через привод соединяется с шаговым двигателем. Обычно весь этот механизм вместе с двигателем подмотки ленты, картриджем с красящей и корректировочной лентой выполняются на каретке. При включении машинки происходит начальное позиционирование колеса. Это очень важный момент в работе машинки. Поскольку от начального положения происходит отсчет каждой следующей буквы. Обычно для позиционирования колесо прокручивается на полный оборот и запирается механическим способом. После этого процесс печати очень прост. Пользователь нажимает на клавишу. Процессор обрабатывает нажатие и отсчитывает, сколько шагов нужно сделать до следующей буквы. После этого шаговый двигатель проворачивает колесо и останавливает его на нужной букве. Для удара по лепестку ромашки используется электромагнитный молоток. Через красящую ленту лепесток ударяет по бумаге. Общий механизм действия показан на рис. 1 . 
Каретка ставится перпендикулярно цилиндрическому валу с помощью которого подается бумага. Каретка движется вдоль вала. Таким образом формируется каждая следующая буква в строке. Для перехода на следующую строку вал поворачивается на один шаг. Все используемые двигатели – шаговые. 
Рис. 1. Механизм ромашкового принтера.
Возможна смена ромашек, что позволяет печатать различными шрифтами или наборами символов.

Матрично-ударные принтеры

Матричные (dot-matrix) принтеры появились давно. Они быстро сменили ромашковые принтеры, поскольку обладали рядом преимуществ. Они были быстрее, позволяли печатать любые изображения, а не только буквы. Они были ориентированы на печать текста, а многие просто не умели печатать ничего более. Эти "наклонности" сохранились за ними и сейчас.
Механизм, который непосредственно наносит изображение на бумагу, называют печатающей головкой. Она состоит из блока иголок (обычно их 9, но для улучшения качества печати применяют и 24 иглы). Каждая игла вставляется в специальные направляющие и подпружинивается. Для того, чтобы напечатать точку игла должна совершить "укол" - резкое движение по направляющим в сторону красящей ленты (при этом игла немного выступает за переднюю поверхность головки, по которой скользит красящая лента), прижать ленту к бумаге и вернуться в исходное положение. При печати весь этот процесс происходит так быстро, что соприкосновение с бумагой носит характер удара, благодаря чему игла отскакивает от упругого бумагоопорного ролика.
Существует два основных метода задания такого движения:
традиционный и
"с запасенной энергией".
В обоих случаях для инициации движения используется электромагнит, катушка которого охватывает иглу. В первом случае игла втягивается в электромагнит, как сердечник в катушку по которой проходит ток (как, например, в электрических звонках). При этом пружина, нанизанная на иглу, сжимается и, после выключения тока, возвращает иглу на место, причем "отскок" за счет упругости бумаги и опорного ролика очень помогает быстрому возвращению на место.
При втором способе пружина в состоянии покоя напряжена за счет действия постоянного магнита. При печати магнитное поле катушки, через которую пропускают ток, компенсирует поле постоянного магнита и запасенная в пружине энергия толкает иглу к красящей ленте. Затем направление тока меняют, и суммарное поле катушки и постоянного магнита возвращает иглу в исходное положение. Для управления током в катушках на плате управления принтером установлены специальные ключевые транзисторы.
Во всех случаях в результате на бумаге мы получаем отдельную точку. Из таких точек и формируется изображение.
Головка крепится на каретке, и к ней подводится шлейф, через который передаются сигналы на отдельные иголки. Каретка в сборе движется вдоль листа бумаги по специальным направляющим. Вообще механизм подачи бумаги аналогичен механизмам печатной машинки.
Слева и справа в крайнем положении каретки устанавливаются датчики, которые не дают каретке заклиниваться в крайнем левом или правом положении.
Картридж с лентой либо просто лента может крепиться как на каретке, так и вне нее в зависимости от модели. Как правило, в малых принтерах картридж устанавливается на каретке.
Механизм промотки ленты состоит из нескольких шестеренок. Ведущая шестеренка зубчато-ременной передачей связана с кареткой (если узел подмотки выполнен не на самой каретке). Механизм сделан таким образом, что вне зависимости от направления движения каретки лента движется всегда в одну сторону.
Принтер имеет несколько встроенных шрифтов и кодовых таблиц. Большинство принтеров поддерживают режимы:
Condensed (печать узким шрифтом),
Draft (быструю печать в один проход), и 
NLQ (near letter quality - печать в два прохода, в этом режиме каждая точка пробивается два раза или же происходит смещение точки при втором проходе, что дает более качественное изображение и как следствие меньшую скорость печати).
Выбор шрифта осуществляется либо с помощью кодов, посылаемых на принтер перед печатью, либо с помощью клавиш панели управления принтером.
Матричные принтеры все еще популярны в настоящее время в основном благодаря не требовательности к бумаге и низкой стоимости расходных материалов.
Кроме того, еще одна особенность матричных принтеров делает их незаменимыми для печати некоторых документов. А именно, иголки матричного принтера при ударе оставляют след (вмятину) на бумаге. Такой след тяжело вывести (тонер лазерника можно просто сцарапать, чернила струйника - смыть). Недаром ведь паспорта подписываются пером. Перо царапает бумагу. Аналогично работает и матричный принтер. На бумаге остается след. Даже если вывести чернила, полностью удалить следы от иголок не удастся.
Остановимся на скоростных матричных принтерах, которые также называют строчными, поскольку они, хотя и используют матричную печать, выделяются в отдельный класс принтеров в связи с тем, что их скорость печати сравнима с лазерными принтерами низкой скорости. Такие принтеры находят свое применение в различных предприятиях, которым необходимо выводить большие объемы текстовой информации, и стоимость печати для которых критична, а качество наоборот не критично.
Итак, у матричного принтера любую из точек в колонках, из которых составляют строку, печатает отдельная иголка. Ее работой управляет миниатюрная катушка, которая при пропускании тока превращается в электромагнит. Но чтобы печатать так всю строку, необходимо более тысячи пар катушка/иголка, строго выровненных в линию. Создать такую конструкцию неимоверно сложно и дорого, поэтому строчные принтеры делают иначе.
Существует несколько конструкций строчных принтеров, поэтому рассмотрим особенности каждой конструкции по очереди. Начнем с OKI Microline MX.
Рис. 2 Фрет строчного принтера

Печатающие иглы вместе с пружинками, их поддерживающими, собирают во фреты по 4, 7 или 13 игл. Размер фрета неизменен - следовательно, меняется расстояние между иглами. Как видно на рис. 1, даже у фрета с наибольшим числом игл расстояние между ними не обеспечивает печати соседних точек. (Для минимально приемлемого качества отпечатка таких точек должно быть хотя бы 30-40 на сантиметр.) Чтобы отпечатать все расположенные на одной линии с иглами точки, иглы приходится перемещать. Для этого фреты монтируются на общем основании, называемом блоком молоточков (рис. 2), и приводятся в колебательное (возвратно-поступательное) движение в направлении, параллельном линии печати. Двигатель одновременно приводит в движение блок молоточков и его противовес. Они синхронно перемещаются в противоположных направлениях. Такое компенсирующее движение снижает нагрузку на неподвижные элементы конструкции и позволяет развить очень высокую скорость перемещения блока молоточков почти без вибрации и шума.
Амплитуда колебаний этого блока точно соответствует шагу молоточков. Скорость перемещения блока молоточков ограничена временем печати точки. (Пока игла прижимает красящую ленту к бумаге, "далеко" перемещать блок молоточков нельзя. А время "укола иглой" задается конструкцией пары катушка/игла.) Увеличив число игл на фрете, мы уменьшим расстояние, на которое перемещается блок молоточков, то есть ускорим печать строки точек.
Для увеличении скорости движения иглы (и, соответственно, для ускорения печати) в блоке молоточков пружины, поддерживающие иглы, изначально максимально напряжены. Достигается это за счет притяжения края пружины (пятки молоточка), на котором закреплена игла, сильным постоянным магнитом, расположенным за этой пяткой. Катушка в нашем случае охватывает магнит (рис. 4), и при пропускании тока поле катушки компенсирует поле магнита и "отпускает" пружину. (Такая технология называется Energy Stored - с запасенной энергией.) Благодаря технологии Energy Stored иглу можно сделать очень короткой. При этом у нее не будет направляющей, как в матричных принтерах. Поэтому движение распрямляющейся пружины должно: а) обеспечить точность попадания иглы в нужную точку (в пятом поколении строчных принтеров, к которому относятся и OKI Microline MX, смещение точки не превышает 0,012 мм); б) удержать иглу от наклона, чтобы печать производилась не ребром ее, а торцом. И это все при скоростном возвратно-поступательном движении! За точность "укола иглой" отвечают именно пружины фретов, имеющие "хитрый" точно рассчитанный профиль и специально подобранный материал. Вот почему фрет высокотехнологичный узел.
Рис. 3. Принцип печати "с запасенной энергией"

Принтер от OKI обеспечивает высокую скорость печати, но качество ограничено максимальной разрешающей способностью 180 х 96 точек на дюйм. Для многих задач его достаточно, но бывают задачи, когда хотелось бы иметь больший выбор.
В некоторых моделях строчных принтеров в место металлических иголок устанавливаются шарики. Это увеличивает скорость печати.
Из дополнительных устройств для матричных принтеров наиболее популярным является т.н. трактор. Трактор представляет собой, как правило, две направляющие (которые крепятся на принтере параллельно направляющим каретки) с двумя защелками под перфорированную бумагу. В медленных принтерах обычно используется рулонная бумага, но строчные принтеры не умеют печатать на рулонной бумаге - ее на этих скоростях печати нужно специально подматывать при подаче и при приеме. 
Поговорим о достоинствах и недостатках матрично-ударной печати:
Достоинства:
низкая стоимость расходных материалов 
достаточно высокая скорость печати (особенно у строчных принтеров) 
нетребовательность к бумаге 
достаточно высокая надежность из-за простоты конструкции 
сравнительно невысокая стоимость устройства у обычных матричных принтеров, особенно формата А3 
Недостатки:
практически неспособны печатать в цвете 
высокие шумы при работе (следует отметить правда, что принтеры Tally, которые я видел лично шумят не больше настольного струйника), а принтер OKI при работе на выставке на максимальной скорости работал так тихо, что посетители интересовались - печатает ли он или просто прогоняет бумагу 
низкая скорость печати у младших моделей, кроме того скорость резко падает при печати графики или в высоком качестве 
практически не предназначен для печати графики из-за большой площади иголки
Струйные принтеры
Струйные принтеры в настоящее время - самые дешевые устройства для печати с компьютера. Качество печати сравнялось с лазерным. Скорость печати также приближается к скорости младших моделей лазерных принтеров. Качество цветной печати на специальной бумаге у лучших моделей практически неотличимо от качества фотографий. В борьбе за размер капель и цветопередачу производители достигли невероятных результатов.
Существуют два основных способа струйной печати:
термоструйная (пузырьково-струйная или Bubble Jet) и
пьезоэлектрическая (Ink Jet). Хотя зачастую все струйные принтеры называют Ink Jet.
До того, как перейти к непосредственному рассмотрению технологии печати скажем пару слов о принципах формирования цветных изображений. Как известно, все цвета можно получить сложением красного, зеленого и синего на фоне черного (модель RGB) либо вычитанием (из белого) голубого, пурпурного и желтого. Смешивая их в тех или иных пропорциях можно получить любой цвет.
В принтерах, естественно, выбрана цветовая модель CMY (голубой, пурпурный и желтый). Обычно в печатающих устройствах используется еще и черный краситель (К). Это делается для лучшей передачи черного цвета и удешевления отпечатков. Такая модель носит название CMYK.
Изображение формируется путем нанесения на бумагу окрашенной жидкости (чернил): черного цвета, либо пигментированной в один из цветов CMY, либо дополнительные к CMY цвета: светлые Cyan и Magenta. При попадании на бумагу эта жидкость быстро впитывается и высыхает.
Печатающая головка представляет собой матрицу сопел, через которые чернила подаются на бумагу. Сопла настолько тонкие, что чернила не протекают через них, удерживаясь за счет поверхностного натяжения и специальной конструкции чернильной емкости.
В термоструйных принтерах каждое сопло снабжается терморезистором. Для того чтобы напечатать отдельную точку на резистор подается напряжение. Он нагревается. В результате этого образуется паровой пузырь, который выталкивает капельку чернил из сопла (отсюда название струйно-пузырьковая печать). Достоинством данной технологи является несомненная дешевизна печатающей головки. Срок ее работы органичен и обычно она совмещается с картриджем. Такой принцип печати используют большинство производителей: Hewlett Packard, Lexmark, Canon, Xerox. Недостатком является практически неуправляемый "взрывной" процесс выталкивания капли и, как следствие, возникновение вокруг точки "тумана" - крошечных капель-сателлитов.
Сопла пьезоэлектрической головки снабжаются пьезоэлементами на пути подачи чернил. При прикладывании электрического напряжения происходит деформация элемента и изменение объема, заполненного чернилами. Поскольку жидкость практически несжимаема, то капля чернил выталкивается из сопла на бумагу. Достоинством такого способа печати является малый размер капли и управляемый процесс ее формирования, а как следствие - малый размер точки и отсутствие сателлитов. Недостатком - то, что такая головка стоит очень дорого. Правда если пользоваться фирменными чернилами, то она служит долго и по расходникам такой принтер получается дешевле других (если конечно и на них используются фирменные расходные материалы). Такие головки разрабатывает и использует фирма Epson.
Для цветной печати используются чернила цветов CMY. Картриджи с цветными чернилами могут быть выполнены в виде одного блока, что обычно встречается в дешевых или старых принтерах, либо в виде отдельных "чернильниц". В последнем случае пользователю не придется выбрасывать остатки чернил из-за того, что в картридже закончился один из цветов. Существует также класс фотопринтеров, которые используют шесть цветов вместо четырех. Добавляются т. н. Light Cyan и Light Magenta. За счет этого достигается более качественная передача оттенков цвета и полутонов. Фотографии, напечатанные на таких принтерах выглядят как настоящие. Во всех случаях оттенки получают за счет более или менее плотного заполнения листа точками. Такое заполнение (растрирование) всегда представляет собой компромисс между количеством оттенков и разрешающей способностью печати (чем больше оттенков - тем ниже разрешающая способность и наоборот). Алгоритмов и способов растрирования существует множество и отвечает за них драйвер принтера. Удачный драйвер способен заметно улучшить качество картинки.
Механика струйного принтера не представляет собой ничего особенного и аналогична по конструкции с механикой матричных принтеров. Та же каретка с печатающей головкой, то же протяжной механизм подачи бумаги Картридж с чернилами может устанавливаться как непосредственно на каретке, так и представлять собой отдельную емкость из которой подача осуществляется через трубочку (такая конструкция более характерна для дорогих принтеров широкого формата).
В настоящее время основная борьба ведется за уменьшение размера капли и как следствие - повышение разрешения. Каждый производитель имеет в своем арсенале ряд преимуществ и в зависимости от требований, выдвигаемых к принтеру можно выбирать того или иного производителя.
Следует также отметить, что струйные принтеры большого формата сильно потеснили плоттеры (в действительности они практически вытеснили перьевые плоттеры), поскольку изготовить такой принтер не слишком сложно и как следствие, цена его не будет очень высокой. Кроме того, струйный плоттер печатает быстрее и может печатать в цвете.
Достоинства:
низкая цена устройства 
возможность печати в цвете 
относительно высокая скорость печати (по сравнению с матричными принтерами) 
низкие шумы при работе 
Недостатки:
высокая стоимость расходных материалов 
низкая скорость (по сравнению с лазерными устройствами)

Лазерные принтеры и копировальные аппараты

Электростатическая фотография
В основе работы, как копировального аппарата, так и лазерного принтера лежит процесс сухой ксерографии (лат. xeros - сухой и graphos - писать). В свою очередь он базируется на электростатической фотографии.
Ксерографический процесс был изобретен американским инженером Честером Карлсоном в 1938 г. В ноябре 1940 г. он получил патент на свое изобретение. В 1947 г. американская компания "Халоид Компани" купила данное изобретение для разработки первого копировального аппарата, который и был произведен в 1950 г. В последствии эта компания несколько раз преобразовывалась и в настоящее время мы знаем ее под названием Xerox.
В основе электростатической фотографии лежит способность некоторых полупроводников уменьшать свое удельное сопротивление под действием света. Такие полупроводники называются фотопроводниками и используются для изготовления фоторецепторов.
Основные характеристики фотопроводников перечислены ниже.
Спектральная чувствительность - характеризует способность фотопроводника реагировать на излучение различных длин волн. Ни один фотопроводник не может одинаково реагировать на различные длины волн. Некоторые типы фоторецепторов слабо реагируют на голубой цвет, который вообще не воспроизводится на копии, некоторые слабо реагируют на желтый цвет, при этом копия, выполненная с оригинала, напечатанного на желтой бумаге приобретает темный фон. В идеале фотопроводник должен одинаково хорошо передавать все цвета, однако обычно этого не происходит. 
Фотоэлектрическая чувствительность (скорость формирования изображения) - это величина, характеризующая скорость уменьшения заряда на фоторецепторе при освещении его светом заданной интенсивности. Чем меньше остаточная величина заряда на фоторецепторе после его экспонирования, тем выше качество копии. Эта величина может зависеть от материала, срока эксплуатации и состояния проводника. 
Скорость темновой утечки - величина, характеризующая, как быстро фотопроводник теряет заряд в темноте. Это связано с тем, что полупроводник, из которого изготовлен фоторецептор хотя и приобретает в темноте свойства диэлектрика, но все же не может хранить заряд так долго, как это могут делать диэлектрики. 
Усталость материала - это явление, возникающее при многократном и частом экспонировании фоторецептора. Усталость материала может возникать и при засветке солнечным светом (пользователь вытащил картридж и оставил его на солнце барабаном вверх). Усталость материала приводит к увеличению скорости темновой утечки заряда, а в некоторых случаях наоборот к сохранению заряда на поверхности после экспонирования. 
Устойчивость к внешним воздействиям - эта характеристика определяет способность фотопроводника сохранять свои свойства как можно дольше при механическом контакте с бумагой. Бумага, при правильном использовании аппарата, является наиболее важным фактором естественного износа фоторецептора. Поэтому шероховатая бумага, неправильно обрезанная и т.д. сокращает срок службы фоторецептора. Хотя сама бумага практически не контактирует с фоторецептором, однако жесткие волокна бумаги могут попадать под ракельный нож. Кроме того, срок его службы сокращают различные химические вещества, которые могут попасть на него с бумаги или с другого источника, а также механические повреждения. 
Кристаллизация - процесс преобразования атомов фотопроводника из аморфной структуры в упорядоченную, кристаллическую. При этом фотопроводник теряет свои свойства. Такой процесс нельзя остановить, но можно замедлить при правильном обращении с проводником. 
Начальный потенциал - это потенциал на поверхности фоторецептора, при котором накапливаемый заряд равен заряду, утекающему в подложку. Обычно фоторецептор заряжают до потенциала ниже начального, чтобы избежать его повреждения. 
Остаточный потенциал - потенциал, который остается на освещенных участках фоторецептора после экспонирования. При экспонировании фоторецептор быстро теряет заряд до определенной величины, затем скорость утекания заряда значительно снижается. Высокий остаточный потенциал способствует притягиванию частиц тонера на освещенные участки, что приводит к фону на копии. 
Технология изготовления фоторецепторов
Фоторецепторы обычно наносятся на алюминиевый полый цилиндр. В качестве фоторецептора служил либо селен и его соединения, либо органические соединения (подложка).
Органический фоторецептор двухслойный. Первый слой - слой, в котором осуществляется перенос заряда, под ним - слой в котором генерируется заряд. За ним идет тонкий слой оксидной пленки, который предотвращает утекание заряда в подложку. Подложка - последний алюминиевый слой.
Селеновый фоторецептор состоит из "ловушечного слоя", представляющего собой естественную оксидную пленку. Этот слой уменьшает скорость темновой утечки заряда. За ним идет фотопроводящий слой, алюминиевая оксидная пленка и подложка.
Существует два вида фоторецепторов: ленточные и цилиндрические. Первые обычно используются в аппаратах с очень высокой скоростью, поскольку позволяют обеспечивать более высокую скорость экспонирования.
Процесс ксерографии
Зарядка
Зарядка фоторецептора - это процесс нанесения равномерного заряда определенной величины на поверхность фоторецептора. Зарядка производится коротроном. Существует несколько их видов, которые мы рассмотрим ниже.
Для зарядки на коротрон подается высокий потенциал с помощью высоковольтного блока. Между коротроном и фоторецептором образуется разность потенциалов в несколько киловольт, что приводит к ударной ионизации воздуха (коронный разряд) и ионы накапливаются на поверхности фоторецептора. Часть электронов с заземленной подложки стекает на землю, при этом в материале подложки, вблизи границы с фотопроводником возникает избыточный заряд, противоположный заряду на поверхности фоторецептора. Экран коротрона заземляют, чтобы разность потенциалов между фоторецептором и коронной проволокой не уменьшалась, поскольку эта разность должна превышать пороговое напряжение короны (напряжение, ниже которого не возникает коронный разряд).
Виды коротронов:
Обычный коротрон представляет собой тонкую проволоку из устойчивого к окислению материала, натянутую на металлическом экране. При загрязнении или окислении проволоки происходит ухудшение качества копии. При загрязнении экрана возможно проскакивание искры между экраном и коротроном, что приводит к необратимому выгоранию фоторецептора. 
Скоротрон - зарядное устройство, позволяющее получить более равномерный заряд поверхности фоторецептора. В нем кроме проволоки используется сетка, на которую также подается напряжение. 
Дикоротрон - позволяет еще более точно регулировать величину заряда. Он состоит из двух активных элементов: коронода и экрана. На коронод подается переменное напряжение порядка 5-6 кВ, а на экран - постоянное 1-3 кВ. Про этом положительные ионы перемещаются от коронода к экрану, а отрицательные - к фоторецептору. 
Коротрон служит источником характерного запаха озона, исходящего от копировального аппарата во время работы. Следует отметить, что при использовании хороших фильтров и их своевременной замене запах не ощущается. В настоящее время фирмы-произвотели переходят на безозоновую технологию. 
Формирование изображения
После зарядки на фоторецептор подается изображение, которое в копировальных аппаратах освещается мощным источником света и проецируется через систему зеркал. Обычно для освещения оригинала используется каретка с лампой как в сканерах, однако в машине Xerox 1075 (с ленточным фоторецептором) например используется лампа-вспышка, которая освещает весь оригинал сразу. Для увеличения и уменьшения изображения служит объектив с изменяемым фокусным расстоянием. Скорость барабана и каретки должна быть согласована. Изображение со стекла экспонирования освещается лампой и через систему зеркал проецируется на фоторецептор. Те места на фоторецепторе, на которые падает свет теряют свой потенциал. Таким образом на фоторецепторе остается рисунок оригинала в виде заряженных участков. 
По способу формирования изображения аппараты можно разделить на аппараты с подвижным столом, где оригинал вместе со стеклом экспонирования перемещается относительно источника света, неподвижным столом, где существует каретка и система зеркал (либо сканер) и аппараты с лампой-вспышкой, в которой весь оригинал освещается сразу. На широкоформатных копировальных аппаратах используется протяжка оригинала относительно стекла экспонирования и источника света. 
Принцип действия каретки здесь описан не будет, поскольку наша статья посвящена теории и практике ксерографической печати.
Экспонирование
На этапе экспонирования на поверхности фоторецептора получается скрытое электростатическое изображение. Рассмотрим этот процесс более подробно. 
До начала экспонирования поверхностный заряд фоторецептора удерживается на месте за счет взаимодействия с зарядом противоположного знака, находящегося на границе заземленной подложки и фоторецептора. 
До попадания света на фотопроводящий слой количество свободных носителей зарядов в нем мало, а удельное сопротивление - велико. Фактически электроны в фотопроводнике после зарядки смещаются из равновесного положения, но они еще находятся в своих молекулах. Такое смещение положительных и отрицательных зарядов в молекуле называется поляризацией. 
Рассмотрим упрощенную модель процесса, который происходит при освещении фоторецептора. Будем считать, что фоторецептор заряжен положительным зарядом. 
При попадании света на фотопроводник в нем происходит генерация свободных носителей заряда. Электрон той молекулы, которая расположена ближе к поверхности слоя перемещается по направлению к положительном иону на поверхности. Это перемещение нейтрализует часть положительных ионов на поверхности. В то же время молекула в верхнем слое остается положительно заряженной. Отсутствие электронов в молекуле называют "дыркой". Тип проводимости, при котором основными носителем заряда являются дырки называют дырочной. При дырочной проводимости происходит перемещение электронов из одного атома в соседний. Результатом этого является перемещение положительных зарядов - дырок - в направлении, противоположном движению электронов. 
После попадания света на фоторецептор электростатическое поле на поверхности фотопроводника изменяется. Оно действует уже не между зарядом на поверхности фоторецептора и подложкой, а межу "верхней" молекулой и подложкой. 
Электроны, находящиеся снизу от "верхней" молекулы, немедленно реагируют на положительный заряд и начинают перемещаться к "верхней" молекуле, чтобы нейтрализовать часть возникшего заряда. Миграция электронов приводит к тому, что положительный заряд от "верхней" молекулы переходит к молекуле из следующего, "второго" слоя молекул фотопроводника. 
При этом электростатическое поле возникает между молекулой "второго" слоя и подложкой. Дырка соответственно перемещается от "верхней" молекулы к молекуле из "второго" слоя. Процесс повторяется до тех пор, пока дырка не перейдет к молекуле фотопроводника, ближайшего к подложке. В этом случае электроны перемещаются от подложки к фотопроводнику, чтобы нейтрализовать положительный заряд. 
Проявление
Проявление - это процесс формирования изображения на фоторецепторе тонером. 
Тонер представляет собой мелкодисперсный порошок, частицы которого состоят из полимера или резины и красящего вещества (для черного тонера обычно используется сажа). 
Возможны два варианта проявления - однокомпонентное и двухкомпонентное. Рассмотрим вначале двухкомпонентный способ. 
Двухкомпонентный способ используется только в случае отрицательной зарядки фоторецептора. 
Тонер из бункера через специальное дозирующее устройство подается в бункер с носителем. Носитель (девелопер) представляет собой частицы магнитного материала, покрытого полимером. 
Прилипание тонера к носителю происходит за счет трибоэлектризации (электризации трением). В процессе трения частицы тонера и носителя приобретают различные заряды и тонер равномерно покрывает носитель. 
Носитель в свою очередь прилипает к магнитному валу, который представляет собой полый вал с постоянными магнитами внутри. Вал, покрытый носителем с тонером входит в непосредственный контакт с фоторецептором, в результате чего частицы тонера, имеющие заряд, противоположный заряду фоторецептора притягиваются к его заряженным участкам. 
Чистый носитель с остатками тонера вновь попадает в бункер. Носитель вновь смешивается с тонером и попадает на магнитный вал. Сам носитель не расходуется в процессе проявки. Однако в результате трения носитель теряет полимерный слой, что приводит к его неспособности притягивать тонер. Кроме того, такой носитель может вызывать механическое повреждение фоторецептора. 
Для того, чтобы тонер не переносился на слабозаряженные участки фоторецептора на магнитный вал подается напряжение смещения порядка 100-500 В, знак которого совпадает со знаком заряда на фоторецепторе. За счет этого сила притяжения тонера к валу увеличивается и тонер не переносится на слабозаряженные участки. Регулируя величину напряжения смещения можно регулировать насыщенность копии, например для создания хорошей копии с плохого оригинала. Современные аппараты обычно сами достаточно хорошо регулируют качество копии, практически не требуя вмешательства оператора. 
Однокомпонентное проявление обычно используется в аппаратах малого класса и лазерных принтерах. В этом случае требуется тонер другого состава. Естественно такой тонер стоит дороже. Однокомпонентное проявление не предусматривает наличия носителя. В этом случае тонер изготавливается из смести частиц магнитного материала, полимера и красителя. 
Из бункера тонер попадает на магнитный вал. Над валом, на выходе из бункера располагается заряжающее лезвие (ракель), которое выполняет две функции: 
регулирует количество тонера на валу; 
заряжает частицы тонера.
Трение частиц тонера о лезвие приводит к зарядке тонера знаком, противоположным знаку заряда фоторецептора. 
Перенос тонера с вала на фоторецептор осуществляется с помощью напряжения смещения, прикладываемого к магнитному валу. В данном случае напряжение смещения представляет собой переменное напряжение с постоянной составляющей, которая по знаку соответствует знаку заряда фоторецептора. Во время периода, со знаком, противоположным знаку заряда фоторецептора тонер переносится на фоторецептор, во время периода, со знаком, соответствующим знаку заряда фоторецептора тонер с фоновых участков возвращается на магнитный вал. 
Регулировка качества копий происходит за счет изменения постоянной составляющей. 
Следует заметить, что в двухкомпонентной системе проявления гораздо сложнее достичь равномерной заливки черным цветом. Это связано с тем, что носитель не успевает принять достаточно тонера. Эта проблема решается использованием двух или трех валов, вращающихся в разные стороны. Однако такая конструкция увеличивает стоимость аппарата. 
Перенос
Процесс переноса - процесс, при котором тонер переносится на бумагу. 
Бумага проходит между коротроном переноса и фоторецептором, на котором находится тонерный рисунок. Коротрон переноса сообщает бумаге заряд, соответствующий заряду фоторецептора. В подложке фоторецептора существует заряд, по знаку противоположный заряду бумаги. За счет этого бумага притягивается к фоторецептору. 
Для того, чтобы тонер переносился на бумагу, сила притяжения между ней и тонером должна быть больше чем сила притяжения между тонером и фоторецептором. Не весь тонер переносится на бумагу. Поэтому его остатки удаляются в процессе очистки фоторецептора. 
Для улучшения качества изображения и уменьшения расхода тонера в некоторых аппаратах осуществляется предварительный перенос, в процессе которого ослабляется заряд фоторецептора. Для этого либо фоторецептор предварительно освещается, либо на коротрон переноса подается переменное напряжение. 
Отделение
Отделение бумаги от фоторецептора осуществляется как механическим так и электрическим способом. 
В первом случае используются либо пальцы отделения, находящиеся в непосредственной близости к фоторецептору, либо отделяющие ремешки, устанавливаемые с одного края фоторецептора. Кромка бумаги скользит по ремешку и затем легко отделяется от фоторецептора. 
Во втором случае используется коротрон отделения, обычно использующийся совместно с механическими средствами. Для отделения бумаги от фоторецептора на коротрон отделения подается переменное напряжение. Он генерирует положительные и отрицательный ионы. Часть из них ослабляют силу притяжения бумаги к фоторецептору, а часть - обеспечивают прилипание тонера к бумаге
Закрепление
После переноса копия уже практически готова. Но изображение, полученное на бумаге может быть стерто практическим любым механическим воздействием (например легким трением). Естественно такая копия не пригодна для практического использования. Для увеличения сцепления тонера с бумагой используется механизм закрепления. 
Существует несколько способов закрепления. Наиболее распространенный - это термомеханический способ, при котором копия подвергается нагреву и механическому прижиму. 
Механизм закрепления носит название фьюзер (печка). Механизм состоит из нагреваемого тефлонового вала, с кварцевой лампой внутри, и резинового прижимного вала. Иногда вместо тефлонового вала устанавливается специальный керамический термоэлемент, который отделяется от бумаги термопленкой. Такие копиры имеют меньший срок прогрева и меньшее энергопотребление, однако и ходит термопленка значительно меньшее количество копий и повредить ее значительно легче при неправильном извлечении бумаги. 
В части аппаратов предусмотрена смазка нагреваемого вала силиконовой смазкой. Это позволяет избежать прилипания тонера к валику. Кроме того может использоваться специальное полотенце, для удаления остатков тонера или другой грязи, прилипшей к валу. 
Для отделения бумаги от вала применяются пальцы отделения. 
Механизм с кварцевой лампой более дорогой, но и более надежный обычно используется в высокопроизводительных машинах. Это например лазерные принтеры Xerox N24/32/40, HP 4plus, Xerox 5405 и т. д. Механизм с термопленкой используется в принтерах и копирах малого класса. Это копировальные аппараты Canon FC/PC серии, принтеры HP 5L, 6L, 5P, 6P, 1100 
Очистка
Очистка - это процесс удаления остатков тонера с фоторецептора после переноса на бумагу. 
Непосредственно перед очисткой может использоваться предочистка с помощью засветки фоторецептора или коротрона предочистки, который генерирует положительные и отрицательные ионы. 
Оставшиеся частицы тонера удаляются с помощью ракельного ножа, находящегося в непосредственном контакте с фоторецептором. Ракель изготавливается и точно позиционируется относительно фоторецептора, для того, чтобы не повредить его. Отработанный тонер попадает в бункер отработки. Повторное его использование не рекомендуется, поскольку тонер слипается и загрязняется. 
Возможное также удаление тонера мягкой щеткой, внутри которой устанавливается система вакуумной откачки. 
Последний этап очистки - это удаление остаточного заряда, которое осуществляется с помощью либо источника света, либо коротрона, знак напряжения которого противоположен знаку заряда фоторецептора. 
Общая схема процесса копирования приведена на следующем рис. 4. 
Рис. 4. Схема процесса копирования

Практическая сторона ксерографии
В больших машинах тонер, фоторецептор, девелопер, ракельный нож, коротрон меняются раздельно, после прохождения определенного количества копий. В малых принтерах и копирах все эти части объединяются в один картридж (т.н. супер-картридж). В части аппаратов такой картридж разделяют на два: копи-картридж (фоторецептор с системой очистки и зарядки) и тонер-картридж (тонер с магнитным валом). По правилам эксплуатации все такие картриджи имеют определенный срок службы и должны заменяться после его окончания. В частности картридж с тонером меняется по окончании в нем тонера.
Принцип действия лазерного принтера
Принцип действия лазерного принтера несколько отличается от принципов работы копировального аппарата. Источником света здесь служит лазер, который уменьшает потенциал в определенных участках фоторецептора. При этом фоновые участки фоторецептора остаются заряженными. Тонер заряжается противоположным зарядом. При контакте тонер притягивается подложкой в участки с низким потенциалом, пробитые лазером.
Лазерная засветка осуществляется следующим способом: Лазерная пушка светит на зеркало, которое вращается с высокой скоростью. Отраженный луч через систему зеркал и призму попадает на барабан и за счет поворота зеркала выбивает заряды по всей длине барабана. Затем происходит поворот барабана на один шаг (этот шаг измеряется в долях дюйма и именно он определяет разрешение принтера по вертикали) и вычерчивается новая линия. В некоторых принтерах кроме поворота барабана используется поворот зеркала по вертикали, которое позволяет на одном шаге поворота барабана вычертить два ряда точек. В частности первые принтеры Lexmark с разрешением 1200 dpi использовали именно этот принцип.
Скорость вращения зеркала очень высока. Она составляет порядка 7-15 тыс. об./мин. Для того, чтобы увеличить скорость печати не увеличивая скорость зеркала его выполняют в виде многогранной призмы (рис. 5).
Рис. 5. Нанесение рисунка на барабан.

Лучи черного и красного цвета соответствуют различным положениям зеркала. В момент А зеркало повернуто под одним углом (красное положение зеркала). В следующий момент времени, соответствующий частоте лазера зеркало поворачивается и занимает черное положение. Отраженный луч попадает уже в другую точку фоторецептора. Естественно в реальности существуют еще дополнительные зеркала, призмы и световоды отвечающие за фокусировку и изменение направления луча.
В светодиодных принтерах (OKI, Panasonic) вместо лазера работает светодиодная панель. Теоретически светодиодная технология более надежна, поскольку является более простой. Ведь недаром фирмы OKI дает на светодиодные панели в своих принтерах пожизненную гарантию. Кроме того, принтеры со светодиодной панелью более компактны. По этой же причине светодиоды часто используют в ксерографических цифровых плоттерах. Однако на практике большинство производителей предпочитает лазерную технологию. Кроме того, лазерные принтеры работают быстрее, в то время, как светодиодные - более дешевы.
На рис.5 и 6 ниже приведены общие схемы светодиодной  и лазерной  технологии
LED Array - светодиодная панель 
Focusing Lens - фокусировочная линза
Toner - тонер Rotating Drum - фоторецептор 
Рис. 5. Схема светодиодной технологии
Laser - лазер 
Light Beam - лазерный луч 
Polygon Mirror - отражающая призма
Focusing Lens - фокусировочная линза
Mirror - зеркало 
Toner - тонер 
Rotating Drum - фоторецептор.
Рис. 6. Схема лазерной технологии

Лазерные принтеры кроме механической части включают в себя достаточно серьезную электронику. В частности на принтерах устанавливается память большого объема, для того, чтобы не загружать компьютер и хранить задания в памяти. На части принтеров устанавливаются винчестеры. Электронная начинка принтера также содержит различные языки описания данных (Adobe PostScript, PCL и т. д.). Эти языки опять же предназначены для того, чтобы забрать часть работы у компьютера и передать принтеру.
Цветная печать обеспечивается использованием разноцветного тонера (CMYK модель). При этом на копию последовательно напыляется тонер различных цветов. В результате смешения порошков получается цветная копия. Тонер каждого цвета хранится в отдельном бункере с собственным магнитным валом и носителем.
Высокая стоимость цветных аппаратов обуславливается тем, что некоторые детали представлены не в одном, а в четырех экземплярах. Кроме того, используются более серьезные барабаны для улучшенной передачи оттенков, а также более точный чем в обычных аппаратах механизм подачи бумаги, поскольку бумага проходит по барабану четыре раза. Кроме того используется фоторецептор другого состава, а вал переноса вообще выполняется, так, чтобы длина его окружности равнялась длине бумаги максимального формата.

Дополнительное оборудование для копировальных аппаратов и принтеров

Автоподатчик документов. Представляет собой устройство, устанавливаемое на крышке сканера копировального аппарата, которое предназначено для подачи документов на стол сканирования без открытия крышки сканера, что значительно ускоряет работу. Автоподатчики зачастую могут работать как с односторонними, так и с двусторонними документами. Такие устройства можно купить и к некоторым сканерам.
Дуплекс. Устройство для двусторонней печати. Конечно каждый может отпечатать вначале нечетные страницы, затем взять стопку, перевернуть ее, заложить в лоток и отпечатать четные страницы. Но представьте себе сетевой принтер, установленный в другом конце офиса, мало того на нем печатает куча народу. Для этих целей и служит дуплекс. Дуплекс позволяет печатать одновременно с двух сторон. Это не означает, что вы покупаете себе чуть ли не второй принтер. Дуплекс просто протягивает бумагу другой стороной без вашего участия.
Финишер. Финишные устройства бывают самыми различными. Это могут быть сортировщики, степлеры, резаки и т.д. Всех объединяет то, что они служат для послепечатной обработки документа, будь то сортировка, сшивание или складывание.
Дополнительные лотки. Они служат для того, чтобы вам как можно реже пришлось подходить к вашему принтеру для зарядки его бумагой.
Достоинства ксерографической печати: 
высокая скорость печати (от 4 до 40 и выше страниц в минуту) 
скорость печати не зависит от разрешения 
высокое качество печати (400 dpi лазерного цветного принтера сравнима с 1400 dpi струйного) 
низкая себестоимость копии (на втором месте после матричных принтеров) 
бесшумность 
Недостатки: 
высокая цена аппарата 
высокое потребление электроэнергии 
очень высокая цена цветных аппаратов 




Категория: Лекция 8 | Добавил: GAS (11.05.2011)
Просмотров: 2615 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Счетчик визитов
-->

Поиск

Календарь

Друзья сайта
  • сайт ПФНГТУ
  • DBRus
  • Английский язык
  • Архитектура ЭВМ
  • Базы данных
  • Вычислительная математика
  • Дискретная математика
  • Дискретная математика
  • Интеллектуальные информационные системы
  • Информационная безопасность и защита информации
  • Компьютерная графика
  • Математическая логика
  • Операционные системы
  • Основы производства промышленных изделий
  • Основы теории управления
  • Представление знаний в ИС
  • Программирование на ЯВУ
  • Физика (электростатика)
  • Электротехника и электроника

  • Copyright MyCorp © 2024 Бесплатный конструктор сайтов - uCoz
    Яндекс.Метрика